Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Nanotechnol ; 17(10): 1027-1037, 2022 10.
Article in English | MEDLINE | ID: covidwho-1991611

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already infected more than 500 million people globally (as of May 2022), creating the coronavirus disease 2019 (COVID-19) pandemic. Nanotechnology has played a pivotal role in the fight against SARS-CoV-2 in various aspects, with the successful development of the two highly effective nanotechnology-based messenger RNA vaccines being the most profound. Despite the remarkable efficacy of mRNA vaccines against the original SARS-CoV-2 strain, hopes for quickly ending this pandemic have been dampened by the emerging SARS-CoV-2 variants, which have brought several new pandemic waves. Thus, novel strategies should be proposed to tackle the crisis presented by existing and emerging SARS-CoV-2 variants. Here, we discuss the SARS-CoV-2 variants from biological and immunological perspectives, and the rational design and development of novel and potential nanotechnology-based strategies to combat existing and possible future SARS-CoV-2 variants. The lessons learnt and design strategies developed from this battle against SARS-CoV-2 variants could also inspire innovation in the development of nanotechnology-based strategies for tackling other global infectious diseases and their future variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Humans , Nanotechnology , Pandemics/prevention & control , SARS-CoV-2/genetics
2.
J Control Release ; 350: 256-270, 2022 10.
Article in English | MEDLINE | ID: covidwho-1991137

ABSTRACT

Since the recent clinical approval of siRNA-based drugs and COVID-19 mRNA vaccines, the potential of RNA therapeutics for patient healthcare has become widely accepted. Lipid nanoparticles (LNPs) are currently the most advanced nanocarriers for RNA packaging and delivery. Nevertheless, the intracellular delivery efficiency of state-of-the-art LNPs remains relatively low and safety and immunogenicity concerns with synthetic lipid components persist, altogether rationalizing the exploration of alternative LNP compositions. In addition, there is an interest in exploiting LNP technology for simultaneous encapsulation of small molecule drugs and RNA in a single nanocarrier. Here, we describe how well-known tricyclic cationic amphiphilic drugs (CADs) can be repurposed as both structural and functional components of lipid-based NPs for mRNA formulation, further referred to as CADosomes. We demonstrate that selected CADs, such as tricyclic antidepressants and antihistamines, self-assemble with the widely-used helper lipid DOPE to form cationic lipid vesicles for subsequent mRNA complexation and delivery, without the need for prior lipophilic derivatization. Selected CADosomes enabled efficient mRNA delivery in various in vitro cell models, including easy-to-transfect cancer cells (e.g. human cervical carcinoma HeLa cell line) as well as hard-to-transfect primary cells (e.g. primary bovine corneal epithelial cells), outperforming commercially available cationic liposomes and state-of-the-art LNPs. In addition, using the antidepressant nortriptyline as a model compound, we show that CADs can maintain their pharmacological activity upon CADosome incorporation. Furthermore, in vivo proof-of-concept was obtained, demonstrating CADosome-mediated mRNA delivery in the corneal epithelial cells of rabbit eyes, which could pave the way for future applications in ophthalmology. Based on our results, the co-formulation of CADs, helper lipids and mRNA into lipid-based nanocarriers is proposed as a versatile and straightforward approach for the rational development of drug combination therapies.


Subject(s)
COVID-19 Drug Treatment , Nanoparticles , Animals , Antidepressive Agents, Tricyclic , Cations , Cattle , Drug Combinations , Drug Repositioning , HeLa Cells , Humans , Lipids/chemistry , Liposomes , Nanoparticles/chemistry , Nortriptyline , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Rabbits
3.
Curr Opin Biotechnol ; 73: 329-336, 2022 02.
Article in English | MEDLINE | ID: covidwho-1482520

ABSTRACT

mRNA Lipid nanoparticles (LNPs) have recently been propelled onto the center stage of therapeutic platforms due to the success of the SARS-CoV-2 mRNA LNP vaccines (mRNA-1273 and BNT162b2), with billions of mRNA vaccine doses already shipped worldwide. While mRNA vaccines seem like an overnight success to some, they are in fact a result of decades of scientific research. The advantage of mRNA-LNP vaccines lies in the modularity of the platform and the rapid manufacturing capabilities. However, there is a multitude of choices to be made when designing an optimal mRNA-LNP vaccine regarding efficacy, stability and toxicity. Herein, we provide a brief on what we consider to be the most important aspects to cover when designing mRNA-LNPs from what is currently known and how to optimize them. Lastly, we give our perspective on which of these aspects is most crucial and what we believe are the next steps required to advance the field.


Subject(s)
Liposomes , Nanoparticles , Vaccine Development , mRNA Vaccines , BNT162 Vaccine , COVID-19 , Humans , Vaccines, Synthetic
4.
Nano Lett ; 21(11): 4774-4779, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1241785

ABSTRACT

The COVID-19 pandemic led to development of mRNA vaccines, which became a leading anti-SARS-CoV-2 immunization platform. Preclinical studies are limited to infection-prone animals such as hamsters and monkeys in which protective efficacy of vaccines cannot be fully appreciated. We recently reported a SARS-CoV-2 human Fc-conjugated receptor-binding domain (RBD-hFc) mRNA vaccine delivered via lipid nanoparticles (LNPs). BALB/c mice demonstrated specific immunologic responses following RBD-hFc mRNA vaccination. Now, we evaluated the protective effect of this RBD-hFc mRNA vaccine by employing the K18 human angiotensin-converting enzyme 2 (K18-hACE2) mouse model. Administration of an RBD-hFc mRNA vaccine to K18-hACE2 mice resulted in robust humoral responses comprising binding and neutralizing antibodies. In correlation with this response, 70% of vaccinated mice withstood a lethal SARS-CoV-2 dose, while all control animals succumbed to infection. To the best of our knowledge, this is the first nonreplicating mRNA vaccine study reporting protection of K18-hACE2 against a lethal SARS-CoV-2 infection.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Animals , Humans , Lipids , Mice , Mice, Inbred BALB C , Mice, Transgenic , Pandemics , RNA, Messenger/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
5.
Bioeng Transl Med ; 6(2): e10213, 2021 May.
Article in English | MEDLINE | ID: covidwho-1160664

ABSTRACT

Ionizable lipid nanoparticles (LNPs) are the most clinically advanced nano-delivery system for therapeutic nucleic acids. The great effort put in the development of ionizable lipids with increased in vivo potency brought LNPs from the laboratory benches to the FDA approval of patisiran in 2018 and the ongoing clinical trials for mRNA-based vaccines against SARS-CoV-2. Despite these success stories, several challenges remain in RNA delivery, including what is known as "endosomal escape." Reaching the cytosol is mandatory for unleashing the therapeutic activity of RNA molecules, as their accumulation in other intracellular compartments would simply result in efficacy loss. In LNPs, the ability of ionizable lipids to form destabilizing non-bilayer structures at acidic pH is recognized as the key for endosomal escape and RNA cytosolic delivery. This is motivating a surge in studies aiming at designing novel ionizable lipids with improved biodegradation and safety profiles. In this work, we describe the journey of RNA-loaded LNPs across multiple intracellular barriers, from the extracellular space to the cytosol. In silico molecular dynamics modeling, in vitro high-resolution microscopy analyses, and in vivo imaging data are systematically reviewed to distill out the regulating mechanisms underlying the endosomal escape of RNA. Finally, a comparison with strategies employed by enveloped viruses to deliver their genetic material into cells is also presented. The combination of a multidisciplinary analytical toolkit for endosomal escape quantification and a nature-inspired design could foster the development of future LNPs with improved cytosolic delivery of nucleic acids.

6.
ACS Nano ; 15(6): 9627-9637, 2021 06 22.
Article in English | MEDLINE | ID: covidwho-1041859

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causal agent of COVID-19 and stands at the center of the current global human pandemic, with death toll exceeding one million. The urgent need for a vaccine has led to the development of various immunization approaches. mRNA vaccines represent a cell-free, simple, and rapid platform for immunization, and therefore have been employed in recent studies toward the development of a SARS-CoV-2 vaccine. Herein, we present the design of an mRNA vaccine, based on lipid nanoparticles (LNPs)-encapsulated SARS-CoV-2 human Fc-conjugated receptor-binding domain (RBD-hFc). Several ionizable lipids have been evaluated in vivo in a luciferase (luc) mRNA reporter assay, and two leading LNPs formulations have been chosen for the subsequent RBD-hFc mRNA vaccine strategy. Intramuscular administration of LNP RBD-hFc mRNA elicited robust humoral response, a high level of neutralizing antibodies and a Th1-biased cellular response in BALB/c mice. The data in the current study demonstrate the potential of these lipids as promising candidates for LNP-based mRNA vaccines in general and for a COVID19 vaccine in particular.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Lipids , Mice , Mice, Inbred BALB C , RNA, Messenger/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL